He did not attend school regularly; virtually invented steam Engines, copiers & discovered Thermodynamics
Posted January 18th, 2014
View All Posts | View All Videos


James Watt, (19 January 1736 – 25 August 1819) was a Scottishinventor and mechanical engineer whose improvements to the Newcomen steam engine were fundamental to the changes brought by the Industrial Revolution in both his native Great Britain and the rest of the world. While working as an instrument maker at the University of Glasgow, Watt became interested in the technology of steam engines. He realised that contemporary engine designs wasted a great deal of energy by repeatedly cooling and re-heating the cylinder. Watt introduced a design enhancement, the separate condenser, which avoided this waste of energy and radically improved the power, efficiency, and cost-effectiveness of steam engines.Eventually he adapted his engine to produce rotary motion, greatly broadening its use beyond pumping water. 


Watt attempted to commercialise his invention, but experienced great financial difficulties until he entered a partnership with Matthew Boulton in 1775. The new firm of Boulton and Watt was eventually highly successful and Watt became a wealthy man. In his retirement, Watt continued to develop new inventions though none were as significant as his steam engine work. He died in 1819 at the age of 83. Watt has been described as one of the most influential figures in human history.He developed the concept of horsepower and the SI unit of power, the watt, was named after him.


James Watt was born on 19 January 1736 in GreenockRenfrewshire, a seaport on the Firth of Clyde. His father was a shipwright, ship owner and contractor, and served as the town's chief baillie, while his mother, Agnes Muirhead, came from a distinguished family and was well educated.

Watt did not attend school regularly; initially he was mostly schooled at home by his mother but later he attended Greenock Grammar School. He exhibited great manual dexterity, engineering skills and an aptitude for mathematics, while Latin and Greek failed to interest him.


When he was eighteen, he travelled to London to study instrument-making for a year, then returned to Scotland, settling in the major commercial city of Glasgow intent on setting up his own instrument-making business. He made and repaired brass reflecting quadrantsparallel rulers, scales, parts for telescopes, and barometers, among other things. Because he had not served at least seven years as an apprentice, the Glasgow Guild of Hammermen (which had jurisdiction over any artisans using hammers)blocked his application, despite there being no other mathematical instrument makers in Scotland.


Watt was saved from this impasse by the arrival of astronomical instruments at the University of Glasgow, instruments that required expert attention. Watt restored them to working order and was remunerated. These instruments were eventually installed in the Macfarlane Observatory. Subsequently three professors offered him the opportunity to set up a small workshop within the university. It was initiated in 1757 and two of the professors, the physicist and chemist Joseph Black as well as the famed Adam Smith, became Watt's friends. At first he worked on maintaining and repairing scientific instruments used in the university, helping with demonstrations, and expanding the production of quadrants. In 1759 he formed a partnership with John Craig, an architect and businessman, to manufacture and sell a line of products including musical instruments and toys. This partnership lasted for the next six years, and employed up to sixteen workers. Craig died in 1765. One employee, Alex Gardner, eventually took over the business, which lasted into the twentieth century.


Watt began to experiment with steam though he had never seen an operating steam engine. He tried constructing a model. It failed to work satisfactorily, but he continued his experiments and began to read everything he could about the subject. He came to realize the importance of latent heat in understanding the engine, which, unknown to Watt, his friend, Joseph Black, had previously discovered some years before. Understanding of the steam engine was in a very primitive state, for the science of thermodynamics was not in place for another 100 years or so. Watt's critical insight, arrived at in May 1765, was to cause the steam to condense in a separate chamber apart from the piston, and to maintain the temperature of the cylinder at the same temperature as the injected steam (by surrounding it with a "steam jacket"). 


In 1776, the first engines were installed and working in commercial enterprises. The design was commercially successful, and for the next five years Watt was very busy installing more engines, mostly in Cornwall for pumping water out of mines. These early engines were not manufactured by Boulton and Watt, but were made by others according to drawings made by Watt, who served in the role of consulting engineer. 

Over the next six years, he made a number of other improvements and modifications to the steam engine. A double acting engine, in which the steam acted alternately on the two sides of the piston was one. He described methods for working the steam "expansively" (i.e., using steam at pressures well above atmospheric). A compound engine, which connected two or more engines was described.


Before 1780 there was no good method for making copies of letters or drawings. The only method sometimes used was a mechanical one using linked multiple pens. Watt at first experimented with improving this method, but soon gave up on this approach because it was so cumbersome. He instead decided to try to physically transfer some ink from the front of the original to the back of another sheet, moistened with a solvent, and pressed to the original. The second sheet had to be thin, so that the ink could be seen through it when the copy was held up to the light, thus reproducing the original exactly. Watt started to develop the process in 1779, and made many experiments to formulate the ink, select the thin paper, to devise a method for wetting the special thin paper, and to make a press suitable for applying the correct pressure to effect the transfer. All of these required much experimentation, but he soon had enough success to patent the process a year later. Watt formed another partnership with Boulton (who provided financing) and James Keir (to manage the business) in a firm called James Watt and Co. The perfection of the invention required much more development work before it could be routinely used by others, but this was carried out over the next few years.


Watt combined theoretical knowledge of science with the ability to apply it practically. Humphry Davy said of him "Those who consider James Watt only as a great practical mechanic form a very erroneous idea of his character; he was equally distinguished as a natural philosopher and a chemist, and his inventions demonstrate his profound knowledge of those sciences, and that peculiar characteristic of genius, the union of them for practical application".


He was greatly respected by other prominent men of the Industrial Revolution. He was an important member of the Lunar Society, and was a much sought-after conversationalist and companion, always interested in expanding his horizons. His personal relationships with his friends and partners were always congenial and long-lasting. Watt was a prolific correspondent. During his years in Cornwall, he wrote long letters to Boulton several times per week. He was averse to publishing his results in, for example, the Philosophical Transactions of the Royal Society however, and instead preferred to communicate his ideas in patents. He was an excellent draughtsman.


He was a rather poor businessman, and especially hated bargaining and negotiating terms with those who sought to utilize the steam engine. In a letter to William Small in 1772, Watt confessed that "he would rather face a loaded cannon than settle an account or make a bargain." Until he retired, he was always much concerned about his financial affairs, and was something of a worrier. His health was often poor. He was subject to frequent nervous headaches and depression.


Watt was the sole inventor listed on his six patents:

  • Patent 913 A method of lessening the consumption of steam in steam engines-the separate condenser. 

  • Patent 1,244 A new method of copying letters; 

  • Patent 1,306 New methods to produce a continued rotation motion – sun and planet.

  • Patent 1,321 New improvements upon steam engines – expansive and double acting.

  • Patent 1,432 New improvements upon steam engines – three bar motion and steam carriage.

  • Patent 1,485 Newly improved methods of constructing furnaces. 

View All Posts | View All Videos



Read More

This outdoorsy meteorologist pioneered the CHAOS theory & the BUTTERFLY EFFECT!!!!

Read More

The near-sighted inventor who left school to support the family, came out with the internal combustion engine !!!

Read More


Read More