The brilliant young teacher moved against odds, persuaded Mr. Edison to secure a job; invented Radio telephony!!!
Posted October 5th, 2014
View All Posts | View All Videos


Reginald Aubrey Fessenden (October 6, 1866 – July 22, 1932) was a Canadian inventor who performed pioneering experiments in radio, including the use of continuous waves and the early—and possibly the first—radio transmissions of voice and music. In his later career he received hundreds of patents for devices in fields such as high-powered transmitting, sonar, and television.

Reginald Aubrey Fessenden was born October 6, 1866, in East-Bolton, Quebec, the eldest of the Reverend Elisha Joseph Fessenden and Clementina Trenholme. Elisha Fessenden was a minister of the Church of England in Canada, and through the years the family moved to a number of postings within the Province of Ontario.

While growing up, Reginald was an accomplished student. In 1877, at the age of eleven, he attended Trinity College School in Port Hope, Ontario for two years. At the age of fourteen, Bishop's College School in Lennoxville, Quebec granted Fessenden a mathematics mastership. At this time, Bishop's College School was a feeder school of Bishop's University and shared the same campus and buildings. In June 1878, the school had an enrollment of only 43 boys. Thus, while Fessenden was only a teenager, he was teaching mathematics to the young children at the school while simultaneously studying with the older students at Bishop's University. Total enrollment at the university for the school year 1883-84 was twenty-five students. At the age of eighteen, Fessenden left Bishop's without having been awarded a degree, even though he had "done substantially all the work necessary."

The next two years he worked as the principal, and sole teacher, at the Whitney Institute in Bermuda. While there, he became engaged to Helen Trott of Bermuda. Fessenden's classical education provided him with only a limited amount of scientific and technical training. Interested in increasing his skills in the electrical field, he moved to New York City in 1886, with hopes of gaining employment with the famous inventor, Thomas Edison. As recounted in his 1925 Radio News autobiography, his initial attempts were rebuffed; in his first application Fessenden wrote, "Do not know anything about electricity, but can learn pretty quick," to which Edison replied, "Have enough men now who do not know about electricity." 

However, Fessenden persevered, and before the end of the year he was hired for a semi-skilled position as an assistant tester for the Edison Machine Works, which was laying underground electrical mains in New York City. He quickly proved his worth, and received a series of promotions, with increasing responsibility for the project. In late 1886, Fessenden began working directly for Thomas Edison at the inventor's new laboratory in West Orange, New Jersey. A broad range of projects included work in solving problems in chemistry, metallurgy, and electricity. However, in 1890, facing financial problems, Edison was forced to lay off most of the laboratory employees, including Fessenden.

Taking advantage of his recent practical experience, Fessenden was able to find positions with a series of manufacturing companies. Next, in 1892, he received an appointment as professor for the newly formed Electrical Engineering department at Purdue University in West Lafayette, Indiana; while there he helped the Westinghouse Corporation install the lighting for the 1893 World Columbian Exposition in Chicago. Shortly thereafter in the same year, George Westinghouse personally recruited Fessenden for the newly created position of chair of the Electrical Engineering department at the Western University of Pennsylvania, renamed to the University of Pittsburgh in 1908. Fessenden began experimenting with wireless telephones in 1898; by 1899 he had a wireless communication system functioning between Pittsburgh and Allegheny City.

In the late 1890s, reports began to appear about the success Guglielmo Marconi was having in developing a practical radio transmitting and receiving system. Fessenden began limited radio experimentation, and soon came to the conclusion that he could develop a far more efficient system than the spark-gap transmitter and coherer-receiver combination which had been championed by Oliver Lodge and Marconi.

In 1900 Fessenden left the University of Pittsburgh to work for the United States Weather Bureau, with the objective of proving the practicality of using a network of coastal radio stations to transmit weather information, thus avoiding the need to use the existing telegraph lines. The contract gave the Weather Bureau access to any devices Fessenden invented, but he would retain ownership of his inventions. The contract promised Fessenden $3,000 per year for his work. They also promised to give him work space, assistance, and housing. 

Fessenden quickly made major advances, especially in receiver design, as he worked to develop audio reception of signals. His initial success came from a barretter detector, which was followed by the electrolytic detector that consisted of a fine wire dipped in nitric acid, and for the next few years this later device would set the standard for sensitivity in radio reception. As his work progressed, Fessenden also evolved the heterodyne principle, which combined two signals to produce a third audible tone. However, heterodyne reception was not fully practical for a decade after it was invented, since it required a means for producing a stable local signal, which awaited the development of the oscillating vacuum-tube.

he continued to work in other fields. As early as 1904 he had helped engineer the Niagara Falls power plant for the newly formed Hydro-Electric Power Commission of Ontario. However, his most extensive work was in developing a type of sonar system, the so-called Fessenden oscillator, for submarines to signal each other, as well as a method for locating icebergs, to help avoid another disaster like the one that sank Titanic. At the outbreak of World War I, Fessenden volunteered his services to the Canadian government and was sent to London, England where he developed a device to detect enemy artillery and another to locate enemy submarines.

An inveterate tinkerer, Fessenden eventually became the holder of more than 500 patents. He could often be found in a river or lake, floating on his back, a cigar sticking out of his mouth and a hat pulled down over his eyes. At home he liked to lie on the carpet, a cat on his chest. In this state of relaxation, Fessenden could imagine, invent and think his way to new ideas, including a version of microfilm, that helped him to keep a compact record of his inventions, projects and patents. He patented the basic ideas leading to reflection seismology, a technique important for its use in exploring for petroleum. In 1915 he invented the fathometer, a sonar device used to determine the depth of water for a submerged object by means of sound waves, for which he won Scientific American's Gold Medal in 1929. Fessenden also received patents for tracer bullets, paging, television apparatus, turbo electric drive for ships, and more.

A radiotelephone (or radiophone) is a communications system for transmission of speech over radio. Radiotelephone systems are not necessarily interconnected with the public "land line" telephone network. "Radiotelephone" is often used to describe the usage of radio spectrum where it is important to distinguish the type of emission from, for example, radiotelegraph or video signals. Where a two-way radio system is arranged for speaking and listening at a mobile station, and where it can be interconnected to the public switched telephone system, the system can provide mobile telephone service.

View All Posts | View All Videos


Married at the age of nine; started education after that; died helping people save from plague !!!

Read More

Father of ENIAC; The first computer built in 1800 square feet !!!

Read More

To save his wife from allergies, the pharmacist invented egg-less custard & baking powder!!!

Read More

This clock repairman's son, an engineer, learnt psychiatry, was thrown off the staff; developed Choice theory & Reality therapy!

Read More