This late speaker, challenger to orthodox thinking laid foundation to NANOTECHNOLOGY!!!
Posted December 29th, 2014
Watch the video View All Posts | View All Videos






Richard Phillips Feynman (May 11, 1918 – February 15, 1988) was an American theoretical physicist known for his work in the path integral formulation of quantum mechanics, the theory of quantum electrodynamics, and the physics of the superfluidity of supercooled liquid helium, as well as in particle physics (he proposed the parton model). For his contributions to the development of quantum electrodynamics, Feynman, jointly with Julian Schwinger and Sin-Itiro Tomonaga, received the Nobel Prize in Physics in 1965.
He developed a widely used pictorial representation scheme for the mathematical expressions governing the behavior of subatomic particles, which later became known as Feynman diagrams. During his lifetime, Feynman became one of the best-known scientists in the world. In a 1999 poll of 130 leading physicists worldwide by the British journal Physics World he was ranked as one of the ten greatest physicists of all time.
His work in theoretical physics, Feynman has been credited with pioneering the field of quantum computing, and introducing the concept of nanotechnology. Feynman was a keen popularizer of physics through both books and lectures, notably a 1959 talk on top-down nanotechnology called There's Plenty of Room at the Bottom, and the three-volume publication of his undergraduate lectures, The Feynman Lectures on Physics.
Feynman also became known through his semi-autobiographical books Surely You're Joking, Mr. Feynman! and What Do You Care What Other People Think? and books written about him, such as Tuva or Bust!.
Born in New York City, the son of Lucille, a homemaker, and Melville Arthur Feynman, a sales manager. Feynman was a late talker, and by his third birthday had yet to utter a single word. He would retain a Bronx accent as an adult. That accent was thick enough to be perceived as an affectation or exaggeration — so much so that his good friends Wolfgang Pauli and Hans Bethe would one day comment that Feynman spoke like a "bum".
The young Feynman was heavily influenced by his father, who encouraged him to ask questions to challenge orthodox thinking, and who was always ready to teach Feynman something new. From his mother he gained the sense of humor that he had throughout his life. As a child, he had a talent for engineering, maintained an experimental laboratory in his home, and delighted in repairing radios. When he was in grade school, he created a home burglar alarm system while his parents were out for the day running errands.
Richard gained a sister, Joan, and the family moved to Far Rockaway, Queens. Though separated by nine years, Joan and Richard were close, as they both shared a natural curiosity about the world. Despite their mother's disapproval of Joan's desire to study astronomy, Richard encouraged his sister to explore the universe. Joan eventually became an astrophysicist specializing in interactions between the Earth and the solar wind.
Upon starting high school, Feynman was quickly promoted into a higher math class and an unspecified school-administered IQ test estimated his IQ at 125—high, but "merely respectable" according to biographer James Gleick; In 1933, when he turned 15, he taught himself trigonometry, advanced algebra, infinite series, analytic geometry, and both differential and integral calculus. His habit of direct characterization sometimes rattled more conventional thinkers.
Feynman attended Far Rockaway High School, as member of the Arista Honor Society, in his last year in high school Feynman won the New York University Math Championship; the large difference between his score and those of his closest competitors shocked the judges.
He applied to Columbia University but was not accepted. Instead, he attended the Massachusetts Institute of Technology, where he received a bachelor's degree in 1939 and in the same year was named a Putnam Fellow.
He attained a perfect score on the graduate school entrance exams to Princeton University in mathematics and physics—an unprecedented feat—but did rather poorly on the history and English portions. Attendees at Feynman's first seminar included Albert Einstein, Wolfgang Pauli, and John von Neumann. He received a Ph.D. from Princeton in 1942; his thesis advisor was John Archibald Wheeler.
Feynman's thesis applied the principle of stationary action to problems of quantum mechanics, inspired by a desire to quantize the Wheeler–Feynman absorber theory of electrodynamics, laying the groundwork for the "path integral" approach and Feynman diagrams, and was titled "The Principle of Least Action in Quantum Mechanics".
Feynman declined an offer from the Institute for Advanced Study in Princeton, New Jersey, despite the presence there of such distinguished faculty members as Albert Einstein, Kurt Gödel and John von Neumann. Feynman followed Hans Bethe, instead, to Cornell University, where Feynman taught theoretical physics from 1945 to 1950.
Despite yet another offer from the Institute for Advanced Study, Feynman rejected the Institute on the grounds that there were no teaching duties: Feynman felt that students were a source of inspiration and teaching was a diversion during uncreative spells.
Feynman has been called the "Great Explainer". He gained a reputation for taking great care when giving explanations to his students and for making it a moral duty to make the topic accessible. His guiding principle was that, if a topic could not be explained in a freshman lecture, it was not yet fully understood
He opposed rote learning or unthinking memorization and other teaching methods that emphasized form over function. Clear thinking and clear presentation were fundamental prerequisites for his attention. It could be perilous even to approach him when unprepared, and he did not forget the fools or pretenders.
"There's Plenty of Room at the Bottom" was a lecture given by physicist Richard Feynman at an American Physical Society meeting at Caltech on December 29, 1959. Feynman considered the possibility of direct manipulation of individual atoms as a more powerful form of synthetic chemistry than those used at the time. The talk went unnoticed and it didn't inspire the conceptual beginnings of the field. In the 1990s it was rediscovered and publicised as a seminal event in the field, probably to boost the history of nanotechnology with Feynman's reputation.
Nanotechnology ("nanotech") is the manipulation of matter on an atomic, molecular, and supramolecular scale. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defines nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers.
This definition reflects the fact that quantum mechanical effects are important at this quantum-realm scale, and so the definition shifted from a particular technological goal to a research category inclusive of all types of research and technologies that deal with the special properties of matter that occur below the given size threshold. It is therefore common to see the plural form "nanotechnologies" as well as "nanoscale technologies" to refer to the broad range of research and applications whose common trait is size. Because of the variety of potential applications (including industrial and military), governments have invested billions of dollars in nanotechnology research.




Best mind Since Einstein is Richard Feynman - Documentaries Discovery Channel


View All Posts | View All Videos
 
0

SOME INTERESTING POSTS!!!!!



The brilliant young teacher moved against odds, persuaded Mr. Edison to secure a job; invented Radio telephony!!!

Read More


Why freedom at Midnight?

Read More


This reject of TOP FINE ACADEMY made THE GATES OF HELL, THE THINKER, AGE OF BRONZE, THE KISS & went on to become a great sculptor!!!

Read More


With a sharp focus since a child, this physicist was the first to carve a synthetic diamond!!!

Read More