He stunned the world with his table & used sanskrit to attribute it's due stature
Posted February 2nd, 2015
Watch the video View All Posts | View All Videos






Dmitri Ivanovich Mendeleev (8 February 1834 – 2 February 1907 O.S. 27 January 1834 – 20 January 1907) was a Russian chemist and inventor. He formulated the Periodic Law, created his own version of the periodic table of elements, and used it to correct the properties of some already discovered elements and also to predict the properties of eight elements yet to be discovered.
Mendeleev was born in the village of Verkhnie Aremzyani, near Tobolsk in Siberia, to Ivan Pavlovich Mendeleev and Maria Dmitrievna Mendeleeva (née Kornilieva). His father was a teacher of fine arts, politics and philosophy. Unfortunately for the family's financial well being, his father became blind and lost his teaching position. His mother was forced to work and she restarted her family's abandoned glass factory. At the age of 13, after the passing of his father and the destruction of his mother's factory by fire, Mendeleev attended the Gymnasium in Tobolsk.
In 1849, his mother took Mendeleev across the entire state of Russia from Siberia to Moscow with the aim of getting Mendeleev a higher education. The university in Moscow did not accept him. The now poor Mendeleev family relocated to Saint Petersburg, where he entered the Main Pedagogical Institute in 1850. After graduation, he contracted tuberculosis, causing him to move to the Crimean Peninsula on the northern coast of the Black Sea in 1855. While there he became a science master of the Simferopol gymnasium. In 1857, he returned to Saint Petersburg with fully restored health.
Between 1859 and 1861, he worked on the capillarity of liquids and the workings of the spectroscope in Heidelberg. In late August 1861 he wrote his first book on the spectroscope. In 1865 he became Doctor of Science for his dissertation "On the Combinations of Water with Alcohol".
Mendeleev also investigated the composition of petroleum, and helped to found the first oil refinery in Russia. He recognized the importance of petroleum as a feedstock for petrochemicals. He is credited with a remark that burning petroleum as a fuel "would be akin to firing up a kitchen stove with bank notes."
In 1907, Mendeleev died at the age of 72 in Saint Petersburg from influenza. The crater Mendeleev on the Moon, as well as element number 101, the radioactive mendelevium, are named after him.
In 1863 there were 56 known elements with a new element being discovered at a rate of approximately one per year. Other scientists had previously identified periodicity of elements. John Newlands described a Law of Octaves, noting their periodicity according to relative atomic weight in 1864, publishing it in 1865. His proposal identified the potential for new elements such as germanium. The concept was criticized and his innovation was not recognized by the Society of Chemists until 1887. Another person to propose a periodic table was Lothar Meyer, who published a paper in 1864 describing 28 elements classified by their valence, but with no prediction of new elements.


After becoming a teacher, Mendeleev wrote the definitive textbook of his time: Principles of Chemistry (two volumes, 1868–1870). As he attempted to classify the elements according to their chemical properties, he noticed patterns that led him to postulate his periodic table; he claimed to have envisioned the complete arrangement of the elements in a dream:
"I saw in a dream a table where all elements fell into place as required. Awakening, I immediately wrote it down on a piece of paper, only in one place did a correction later seem necessary."
—Mendeleev, as quoted by Inostrantzev
By adding additional elements following this pattern, Dmitri developed his extended version of the periodic table. On 6 March 1869, Mendeleev made a formal presentation to the Russian Chemical Society, entitled The Dependence between the Properties of the Atomic Weights of the Elements, which described elements according to both atomic weight and valence. This presentation stated that



  • The elements, if arranged according to their atomic weight, exhibit an apparent periodicity of properties.

  • Elements which are similar regarding their chemical properties have atomic weights which are either of nearly the same value (e.g., Pt, Ir, Os) or which increase regularly (e.g., K, Rb, Cs).

  • The arrangement of the elements in groups of elements in the order of their atomic weights corresponds to their so-called valencies, as well as, to some extent, to their distinctive chemical properties; as is apparent among other series in that of Li, Be, B, C, N, O, and F.

  • The elements which are the most widely diffused have small atomic weights.

  • The magnitude of the atomic weight determines the character of the element, just as the magnitude of the molecule determines the character of a compound body.

  • We must expect the discovery of many yet unknown elements–for example, two elements, analogous to aluminium and silicon, whose atomic weights would be between 65 and 75.

  • The atomic weight of an element may sometimes be amended by a knowledge of those of its contiguous elements. Thus the atomic weight of tellurium must lie between 123 and 126, and cannot be 128. (Tellurium's atomic mass is 127.6, and Mendeleev was incorrect in his assumption that atomic mass must increase with position within a period.)

  • Certain characteristic properties of elements can be foretold from their atomic weights.


For his predicted eight elements, he used the prefixes of eka, dvi, and tri (Sanskrit one, two, three) in their naming. Mendeleev questioned some of the currently accepted atomic weights (they could be measured only with a relatively low accuracy at that time), pointing out that they did not correspond to those suggested by his Periodic Law. He noted that tellurium has a higher atomic weight than iodine, but he placed them in the right order, incorrectly predicting that the accepted atomic weights at the time were at fault. He was puzzled about where to put the known lanthanides, and predicted the existence of another row to the table which were the actinides which were some of the heaviest in atomic mass. Some people dismissed Mendeleev for predicting that there would be more elements, but he was proven to be correct when Ga (gallium) and Ge (germanium) were found in 1875 and 1886 respectively, fitting perfectly into the two missing spaces.
The scientist's sculpture on Moskovsky Prospekt in Saint Petersburg next to his Periodic Table on a wall of D.I.Mendeleyev Institute for Metrology opposite Saint Petersburg State Institute of Technology
By giving Sanskrit names to his "missing" elements, Mendeleev showed his appreciation and debt to the Sanskrit grammarians of ancient India, who had created sophisticated theories of language based on their discovery of the two-dimensional patterns in basic sounds. Mendeleev was a friend and colleague of the Sanskritist Böhtlingk, who was preparing the second edition of his book on Pāṇini at about this time, and Mendeleev wished to honor Pāṇini with his nomenclature. Noting that there are striking similarities between the periodic table and the introductory Śiva Sūtras in Pāṇini's grammar, Prof. Kiparsky says:
"The analogies between the two systems are striking. Just as Panini found that the phonological patterning of sounds in the language is a function of their articulatory properties, so Mendeleev found that the chemical properties of elements are a function of their atomic weights. Like Panini, Mendeleev arrived at his discovery through a search for the "grammar" of the elements..."
The original draft made by Mendeleev would be found years later and published under the name Tentative System of Elements.




Dmitri Mendeleev: Great Minds


View All Posts | View All Videos
 
0

SOME INTERESTING POSTS!!!!!



This MONSTER only known for Automobiles has other faces too !!!

Read More


A shoemaker's apprentice who invented electromagnet, electrometer & a galvanometer

Read More


How many CHILDREN'S DAYS should a child remember ? It's World Diabetes day too!!!

Read More


This son on a locomotive driver changed the way of commute via road !!!

Read More