To honor his work, his name was given to the man who calculated the age of the Earth - Kelvin
Posted July 26th, 2015
Watch the video View All Posts | View All Videos






William Thomson, 1st Baron Kelvin OM GCVO PC PRS PRSE (/ˈkɛlvɪn/; 26 June 1824 – 17 December 1907) was a British mathematical physicist and engineer who was born in Belfast in 1824. At the University of Glasgow he did important work in the mathematical analysis of electricity and formulation of the first and second laws of thermodynamics, and did much to unify the emerging discipline of physics in its modern form. He also had a career as an electric telegraph engineer and inventor, which propelled him into the public eye and ensured his wealth, fame and honour. For his work on the transatlantic telegraph project he was knighted by Queen Victoria, becoming Sir William Thomson. He had extensive maritime interests and was most noted for his work on the mariner's compass, which had previously been limited in reliability.
Absolute temperatures are stated in units of kelvin in his honour. While the existence of a lower limit to temperature (absolute zero) was known prior to his work, Lord Kelvin is widely known for determining its correct value as approximately −273.15 degree Celsius or −459.67 degree Fahrenheit.
William was tutored at home by his father. Thomson had heart problems and nearly died when he was 9 years old. He attended the Royal Belfast Academical Institution, where his father was a professor in the university department, before beginning study at Glasgow University in 1834 at the age of 10, not out of any precociousness; the University provided many of the facilities of an elementary school for able pupils, and this was a typical starting age. In school, Thomson showed a keen interest in the classics along with his natural interest in the sciences.
In the academic year 1839/1840, Thomson won the class prize in astronomy for his Essay on the figure of the Earth which showed an early facility for mathematical analysis and creativity. In 1845 Thomson graduated as Second Wrangler. He also won a Smith's Prize, which, unlike the tripos, is a test of original research. Robert Leslie Ellis, one of the examiners, is said to have declared to another examiner You and I are just about fit to mend his pens. While at Cambridge, Thomson was active in sports, athletics and sculling, winning the Colquhoun Sculls in 1843. He also took a lively interest in the classics, music, and literature; but the real love of his intellectual life was the pursuit of science. The study of mathematics, physics, and in particular, of electricity, had captivated his imagination.
By 1847, Thomson had already gained a reputation as a precocious and maverick scientist when he attended the British Association for the Advancement of Science annual meeting in Oxford. At that meeting, he heard James Prescott Joule making yet another of his, so far, ineffective attempts to discredit the caloric theory of heat and the theory of the heat engine built upon it by Sadi Carnot and Émile Clapeyron. Joule argued for the mutual convertibility of heat and mechanical work and for their mechanical equivalence.
Thomson developed a complete system for operating a submarine telegraph that was capable of sending a character every 3.5 seconds. He patented the key elements of his system, the mirror galvanometer and the siphon recorder, in 1858. Over the period 1855 to 1867, Thomson collaborated with Peter Guthrie Tait on a text book that founded the study of mechanics first on the mathematics of kinematics, the description of motion without regard to force. The text developed dynamics in various areas but with constant attention to energy as a unifying principle. A second edition appeared in 1879, expanded to two separately bound parts. The textbook set a standard for early education in mathematical physics.
Between 1870 and 1890 a theory purporting that an atom was a vortex in the ether was immensely popular among British physicists and mathematicians. About 60 scientific papers were written by around 25 scientists. Following the lead of Thomson and Tait, the branch of topology called knot theory was developed. Kelvin's initiative in this complex study that continues to inspire new mathematics has led to persistence of the topic in history of science.
Thomson was an enthusiastic yachtsman, his interest in all things relating to the sea perhaps arising from, or at any rate fostered by, his experiences on the Agamemnon and the Great Eastern.
Thomson introduced a method of deep-sea sounding, in which a steel piano wire replaces the ordinary hand line. The wire glides so easily to the bottom that "flying soundings" can be taken while the ship is going at full speed. A pressure gauge to register the depth of the sinker was added by Thomson.
He was ennobled in 1892 in recognition of his achievements in thermodynamics, and of his opposition to Irish Home Rule, becoming Baron Kelvin, of Largs in the County of Ayr. He was the first British scientist to be elevated to the House of Lords. The title refers to the River Kelvin, which flows close by his laboratory at the University of Glasgow. His home was the imposing red sandstone mansion Netherhall, in Largs. Despite offers of elevated posts from several world renowned universities Lord Kelvin refused to leave Glasgow, remaining Professor of Natural Philosophy for over 50 years, until his eventual retirement from that post. The Hunterian Museum at the University of Glasgow has a permanent exhibition on the work of Lord Kelvin including many of his original papers, instruments and other artefacts such as his smoking pipe.
Always active in industrial research and development, he was recruited around 1899 by George Eastman to serve as vice-chairman of the board of the British company Kodak Limited, affiliated with Eastman Kodak.




All About - William Thomson, 1st Baron Kelvin


View All Posts | View All Videos
 
0

SOME INTERESTING POSTS!!!!!



Remembering the thunderous southern pioneer freedom fighter who stood up against east india company & helped Tipu sultan too!!!

Read More


From suffering with bone disease, getting a 'c' on his idea, to making it world's largest courier company; he flew a long way!!!

Read More


A Tribute to the Punjab Kesari !!!

Read More


Father of the modern day hot air balloon!!!

Read More